


## Shirpur Education Society's

# R. C. Patel Institute of Technology, Shirpur (An Autonomous Institute)

Course Structure and Syllabus

Honors Degree Program in Computational Biology
Artificial Intelligence (AI) and Data Science

With effect from Year 2025-26



|              |        |                   | Honors Degree Program in Computational Biology (w.e.f. 2025-26) | n Comput   | tations            | al Bic  | logy | (w.e.f.                     | 2025-2                  | (9)                   |     |         |   |        |
|--------------|--------|-------------------|-----------------------------------------------------------------|------------|--------------------|---------|------|-----------------------------|-------------------------|-----------------------|-----|---------|---|--------|
|              | (      |                   |                                                                 |            | Teaching<br>Scheme | ng<br>e |      | Eva                         | Evaluation Scheme       | cheme                 |     |         |   |        |
| $S_{\Gamma}$ | Course | Course            | Course Title                                                    |            |                    |         | Cont | Continuous Assessment (CA)  | ssessmer                | nt (CA)               |     | Total   | ű | Credit |
|              | 0      |                   |                                                                 |            |                    |         | TA   | Term<br>Test 1<br>(TT1)     | Term<br>Test 2<br>(TT2) | Average of (TT1 & TT2 | ESE |         |   |        |
|              |        |                   |                                                                 |            | LT                 | 4       | [A]  |                             |                         | [B]                   | [0] | [A+B+C] | - |        |
|              |        |                   |                                                                 | Sem-III    | II                 |         |      |                             |                         |                       |     |         |   |        |
| _            | H11    | RCP24SH1301       | Computational Cellular Biology                                  |            | 3                  |         | 25   | 15                          | 15                      | 15                    | 09  | 100     | 3 | 3      |
|              |        |                   |                                                                 | Sem-IV     | <b>^</b>           |         |      |                             |                         |                       |     |         |   |        |
| 2            | H1     | RCP24SH1401       | Computational Molecular Biology                                 |            | 3                  |         | 25   | 15                          | 15                      | 15                    | 09  | 100     | 3 | 3      |
|              |        |                   |                                                                 | Sem-V      | >                  |         |      |                             |                         |                       |     |         |   |        |
| c            | HI     | RCP24SH1501       | Algorithms for Computational Biology                            |            | က                  |         | 25   | 15                          | 15                      | 15                    | 09  | 100     | 3 | ,      |
| 0            | H1     | RCP24SH1501L      | Algorithms for Computational Biology Laboratory                 | Laboratory |                    | 2       | 25   |                             |                         |                       | 25  | 20      | 1 | 4      |
|              |        |                   |                                                                 | Sem-VI     | 17                 |         |      |                             |                         |                       |     |         |   |        |
| -            | H1     | RCP24SH1601       | Computational Models for Biology                                |            | 3                  |         | 25   | 15                          | 15                      | 15                    | 09  | 100     | 3 | -      |
| 4            | H1     | RCP24SH1601L      | Computational Models for Biology Labor                          | Laboratory |                    | 2       | 25   |                             |                         |                       | 25  | 20      | 1 | 4      |
|              |        |                   |                                                                 | Sem-VIII   | III                |         |      |                             |                         |                       |     |         |   |        |
| 20           | HI     | RCP24SH1801       | Bigdata in Bioinformatics                                       |            | 4                  |         | 25   | 15                          | 15                      | 15                    | 09  | 100     | 4 | 4      |
|              |        |                   |                                                                 | Total      | 16                 | 4       | 175  |                             |                         | 75                    | 350 | 009     | 1 | 18     |
|              |        | 407/              | .//.                                                            |            |                    |         |      | SW.                         |                         | , 1                   |     |         |   |        |
|              |        | Prepared by:      | Prof.                                                           | til        |                    |         | Д    | Prof. Dr. P. J. Deore       | P. J. Deo               | re (                  |     |         |   |        |
|              |        | Prof. V. V. Katre | BOS Chairman                                                    |            |                    |         | Dean | Dean Academics/Dy. Director | ss/Dy. D                | irector               |     |         |   |        |
|              |        | 2                 | bush                                                            | 0.01       |                    |         | 1    |                             | +                       | -                     |     |         |   |        |
|              |        | # 4               |                                                                 | 7          |                    |         | 1    | 1                           | - 1                     |                       |     |         |   |        |

Checked by: . Layde

Prof. Dr. J. B. Patil

Director



Semester - III



| Program: Honors Degree Program in Computational Biology Artificial Intelligence and Data Science | S. Y.<br>B.Tech | Semester: III |
|--------------------------------------------------------------------------------------------------|-----------------|---------------|
| Computational Cellular Biology (RCP24SH1301)                                                     |                 |               |

### Course Objective(s):

1. Analyze cell structure the concepts of cellular transportation systems and cell signaling Familiarisation to Molecular Biology.

| CO  | Course Outcomes                                                                                   | Blooms<br>Level | Blooms<br>Description |
|-----|---------------------------------------------------------------------------------------------------|-----------------|-----------------------|
| CO1 | Define and recall the cell structure and functions.                                               | L1              | Remember              |
| CO2 | Classify the cell constituents and biomolecules.                                                  | L4              | Analyse               |
| CO3 | Elaborate the principles and regulations of replication, transcription and translation mechanism. | L2              | Understand            |
| CO4 | Develop knowledge on genome-level cellular organization.                                          | L6              | Create                |
| CO5 | Identify the cellular data and apply basic sequencing algorithms.                                 | L1              | Remember              |



## Computational Cellular Biology (RCP24SH1301) Course Contents

Unit-I 07 Hrs.

## Cell Types, their Structure and Function, Cell-:

Unit of life, Cell morphology, Difference between bacterial, Plant and Animal cells, Structure and function of membranes, Membrane organization and composition, Structure and functions of cell organelles - Nucleus, Mitochondria, Ribosome, Golgi bodies, Lysosomes, Endoplasmic reticulum, Peroxisomes, Chloroplast and vacuoles.

Unit-II 07 Hrs.

## Cellular Transport Systems Transport types-:

Passive and Active transport, Permeases, Na+/K+, Ca2+ - ATPase pumps, ATP dependent proton pumps Cotransport, Symport, Antiport, Role of lysosomal and vacuolar membrane in cellular transport, Transport into prokaryotic cells, Endocytosis and Exocytosis, Entry of viruses and toxins into

Unit-III 06 Hrs.

Cell Signaling Types -: Autocrine, Paracrine, and Endocrine signaling molecules, Secondary signaling molecules G-protein coupled signal transduction pathways involving cAMP, cGMP, IP3, DAG and Ca2+ as second messengers.

Unit-IV 07 Hrs.

Genome Organization Structure of DNA-: Nucleotides, Nucleosides, Sugar, Bases, Bonds involved in double stranded DNA; Chargaff's rule; Genome organization in prokaryotes and eukaryotes; Chromosome structure – Different types of histones and chromosome packing; Central dogma of life; DNA and RNA as genetic material; Differences between DNA and RNA

Unit-V 06 Hrs.

## Types of Data in Cellular Biology-:

Genomic Data, Proteomic Data, Metabolomic Data, Imaging Data, Signal Transduction Data, Data Analysis Techniques: Hypothesis testing, Regression Analysis, Survival Analysis (Kaplan-Meier curves and Cox), False Discovery Rates

Unit-VI

06 Hrs.

Sequence Alignment Algorithms: Needleman-Wunsch Algorithm: Used for global sequence alignment, such as aligning DNA or protein sequences to identify similarities and differences. Smith-Waterman Algorithm: Used for local sequence alignment, useful for identifying regions of similarity between sequences. Sequencing Applications

#### Text Books:

Lodish H, Berk A Kaiser CA Krieger M, Bretscher A, Ploegh H, Amon A, Martin KC (2012)
 Molecular Cell Biology, 7<sup>th</sup> edition, W.H. Freeman. USA.

#### Reference Books:

- 1. Cooper GM and Hausman RE (2013) The Cell: A Molecular Approach.  $6^{\rm th}$  edition. Sinauer Associates, Inc. USA
- 2. Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, and Walter P (2014) Molecular
- 3. Biology of the Cell.  $6^{\rm th}$ edition. Garland Science, USA.

